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Abstract. We consider the Euclidean D-dimensional −λ|ϕ|4 + η|ϕ|6 (λ, η > 0) model with d (d ≤ D)
compactified dimensions. Introducing temperature by means of the Ginzburg–Landau prescription in the
mass term of the Hamiltonian, this model can be interpreted as describing a first-order phase transition
for a system in a region of the D-dimensional space, limited by d pairs of parallel planes, orthogonal to
the coordinates axis x1, x2, . . . , xd. The planes in each pair are separated by distances L1, L2, . . . , Ld.
We obtain an expression for the transition temperature as a function of the size of the system, Tc({Li}),
i = 1, 2, . . . , d. For D = 3 we particularize this formula, taking L1 = L2 = · · · = Ld = L for the physically
interesting cases d = 1 (a film), d = 2 (an infinitely long wire having a square cross-section), and for d = 3
(a cube). For completeness, the corresponding formulas for second-order transitions are also presented.
Comparison with experimental data for superconducting films and wires shows qualitative agreement with
our theoretical expressions.

PACS. 03.70.+k Theory of quantized fields – 11.10.-z Field theory

1 Introduction

Studies on field theory applied to second-order phase
transitions have been done in the literature for a long
time. A thorough account on the subject can be found in
references [1–7]. Under the assumption that information
about general features of the behavior of systems under-
going phase transitions can be obtained in the approx-
imation which neglects gauge field contributions in the
Ginzburg–Landau model, investigations have been done
with an approach different from the renormalization-group
analysis. The system confined between two parallel planes
has been considered and using the formalism developed
in reference [8] the way in which the critical tempera-
ture for a second-order phase transition is affected by the
presence of confining boundaries has been investigated.
In particular, a study has been carried out on how the
critical temperature of a superconducting film depends on
its thickness [9]. Moreover, confined systems in regions of
three-dimensional space with some other shapes were also
considered: grains and wires [10,11]. In all those cases a
minimal size of these regions can be determined for which
the transition is still sustained.

a e-mail: roditi@cbpf.br

In a previous article [13] we have done a further step,
by considering in the simpler case of the system confined
between two parallel planes, the model which besides the
quartic scalar field self-interaction, a sextic one is also
present. The model with both interactions taken together
leads to a renormalizable quantum field theory in three di-
mensions and, in the context considered in reference [13],
it describes first-order phase transitions in films. In this
paper we extend this formalism to a general framework,
considering the Euclidean D-dimensional −λ|ϕ|4 + η|ϕ|6
(λ, η > 0)model with d (d ≤ D) compactified dimensions,
from which we obtain general formulas for the dependence
of the transition temperature on the parameters delimit-
ing the spatial region within which the system is confined.
Particularizing for D = 3, we then consider the super-
conducting material in the form of a film (d = 1), of a
wire (d = 2), and of a grain (d = 3). We also present for
comparison the corresponding formulas for second-order
transitions.

The usual Ginzburg–Landau Hamiltonian considers
only the term λϕ4 (λ > 0). This model is known to lead to
second-order phase transitions. But a potential of the type
−λϕ4+ηϕ6 (λ, η > 0) ensures that the system undergoes a
first-order transition. See, for example, [12]. In some of our
previous papers (Refs. [9,11,10]) the λϕ4 model has been
used to determine a theoretical Tc(L) × L curve for films
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wires and grains and a comparison to experimental data
for superconducting films has been done. In the present
work we wished to do the same with the extended model
in order to compare expected results from second- and
first-order transitions. Of course, there are many other po-
tentials that engender first-order transitions, for instance,
the Halperin–Lubensky–Ma potential [14], which induces
first-order transitions in superconducting materials by ef-
fect of integration over the gauge field and takes the form
−αϕ3 + βϕ4. Our potential −λϕ4 + ηϕ6 (λ, η > 0) is just
a simple choice to generate first-order transitions in the
context of the Ginzburg-Landau theory.

We consider, as in previous publications, that the sys-
tem is a portion of material of some size, the behavior of
which in the critical region is to be derived from a quan-
tum field theory calculation of the dependence of the phys-
ical mass parameter on its size. We start from the effective
potential, which is related to the physical mass through
a renormalization condition. This condition, however, re-
duces considerably the number of relevant Feynman dia-
grams contributing to the mass, if one wishes to be re-
stricted to first-order terms in both coupling constants.
In fact, just two diagrams need to be considered in this
approximation: a tadpole graph with the ϕ4 coupling (1
loop) and a “shoestring” graph with the ϕ6 coupling (2
loops). No diagram with both couplings occurs. The size-
dependence appears from the treatment of the loop inte-
grals. The dimensions of finite extent are treated in mo-
mentum space using the formalism of reference [8].

It is worth to notice that for superconducting films
with thickness L, a qualitative agreement of our theoret-
ical L-dependent critical temperature is found with ex-
periments. This occurs in particular for thin films (in the
case of first-order transitions) and for a wide range of val-
ues of L for second-order transitions [13]. Moreover, the
recently available experimental data for superconducting
wires [22,23] are compatible with our theoretical predic-
tion of the first-order critical temperature as a function of
the transverse cross section of the wire.

The paper is organized as follows: In Section 2 we
present the model and the general description of the
D-dimensional Euclidean system with a compactified
d-dimensional subspace; for this, we make an adaptation
of the Matsubara formalism suited for our purposes. The
contributions from the relevant Feynman diagrams to the
effective potential are then established. Next, in Section 3,
we exhibit expressions showing the size dependence of the
critical temperature for various shapes of confined mate-
rials. Comparisons with experimental data for films and
wires are shown. Finally, in the the last section we present
our conclusions.

2 Effective potential with compactification
of a d-dimensional subspace

We consider the scalar field model described by the
Ginzburg–Landau Hamiltonian density in a Euclidean
D-dimensional space, including both ϕ4 and ϕ6 interac-
tions, in the absence of external fields, given by (in natural

units, � = c = kB = 1),

H =
1
2
|∂µϕ| |∂µϕ| + 1

2
m2

0 |ϕ|2 −
λ

4
|ϕ|4 +

η

6
|ϕ|6 , (1)

where λ > 0 and η > 0 are the renormalized quartic and
sextic self-coupling constants. Near criticality, the bare
mass is given by m2

0 = α(T/T0 − 1), with α > 0 and
T0 being a parameter with the dimension of temperature.
Recall that the critical temperature for a first-order tran-
sition described by the Hamiltonian above is higher than
T0 [12]. This will be explicitly stated in equation (19) be-
low. Our purpose will be to develop the general case of
compactifying a d-dimensional subspace.

We thus consider the system in D dimensions confined
to a region of space delimited by d ≤ D pairs of parallel
planes. Each plane of a pair j is at a distance Lj from
the other member of the pair, j = 1, 2, . . . , d, and is
orthogonal to all other planes belonging to distinct pairs
{i}, i �= j. This may be pictured as a parallelepipedal box
embedded in the D -dimensional space, whose parallel
faces are separated by distances L1, L2, . . . , Ld. We use
Cartesian coordinates r = (x1, ..., xd, z), where z is a
(D − d)-dimensional vector, with corresponding momen-
tum k = (k1, ..., kd,q), q being a (D − d)-dimensional
vector in momentum space. The generating functional of
Schwinger functions is written in the form

Z =
∫

DϕDϕ∗ exp

(
−
∫ L1

0

dx1 · · ·
∫ Ld

0

dxd

∫
dD−dxH(|ϕ| , |∇ϕ|)

)
, (2)

with the field ϕ(x1, ..., xd, z) satisfying the condition of
confinement inside the box, ϕ(xi ≤ 0, z) = ϕ(xi ≥
0, z) = const. Then, following the procedure developed
in reference [8], we are allowed to introduce a generalized
Matsubara prescription, performing the following multi-
ple replacements (compactification of a d-dimensional sub-
space),

∫
dki

2π
→ 1

Li

+∞∑
ni=−∞

; ki → 2niπ

Li
, i = 1, 2..., d. (3)

Notice that compactification can be implemented in differ-
ent ways, as for instance by imposing specific conditions
on the fields at spatial boundaries. We here choose peri-
odic boundary conditions.

We emphasize, however, that we are considering a
Euclidean field theory in D purely spatial dimensions.
Therefore, we are not working within the framework of
finite-temperature field theory. Here, the temperature is
introduced in the mass term of the Hamiltonian by means
of the usual Ginzburg–Landau prescription.

In principle, the effective potential for systems with
spontaneous symmetry breaking is obtained, following the
analysis introduced in reference [15], as an expansion in
the number of loops in Feynman diagrams. Accordingly, to
the free propagator and to the no-loop (tree) diagrams for



C.A. Linhares et al.: Critical temperature for first-order phase transitions in confined systems 355

both couplings, radiative corrections are added, with in-
creasing number of loops. Thus, at the 1-loop approxima-
tion, we get the infinite series of 1-loop diagrams with all
numbers of insertions of the ϕ4 vertex (two external legs
in each vertex), plus the infinite series of 1-loop diagrams
with all numbers of insertions of the ϕ6 vertex (four exter-
nal legs in each vertex), plus the infinite series of 1-loop
diagrams with all kinds of mixed numbers of insertions
of ϕ4 and ϕ6 vertices. Analogously, we should include all
those types of insertions in diagrams with 2 loops, etc.
However, instead of undertaking this computation, in our
approximation we restrict ourselves to the lowest terms in
the loop expansion. We recall that the gap equation we
are seeking is given by the renormalization condition in
which the physical squared mass is defined as the second
derivative of the effective potential U(ϕ0) with respect to
the classical field ϕ0, taken at zero field,

∂2U(ϕ0)
∂|ϕ0|2

∣∣∣∣
ϕ0=0

= m2. (4)

Within our approximation, we do not need to take into
account the renormalization conditions for the interaction
coupling constants, i.e., they may be considered as already
renormalized when they are written in the Hamiltonian.

At the 1-loop approximation, the contribution of
loops with only |ϕ0|4 vertices to the effective potential
is obtained directly from [8], as an adaptation of the
Coleman–Weinberg expression after compactification in
d dimensions. In this case, we start from the well-known
expression for the one-loop contribution to the zero-
temperature effective potential in unbounded space [8],

U1(ϕ0) =
∞∑

s=1

(−1)s+1

2s

[
λ|ϕ0|2

2

]s ∫
dDk

(k2 + m2)s
, (5)

where m is the physical mass.
In the following, to deal with dimensionless quanti-

ties in the regularization procedures, we introduce pa-
rameters c2 = m2/4π2µ2, (Liµ)2 = a−1

i , g1 =
(−λ/16π2µ4−D), |ϕ0/µD−2|2 = |ϕ0|2, where ϕ0 is the
normalized vacuum expectation value of the field (the clas-
sical field) and µ is a mass scale. In terms of these pa-
rameters and performing the Matsubara replacements (3),
the one-loop contribution to the effective potential can be
written in the form

U1(ϕ0, a1, ..., ad) = µD√
a1 · · ·ad

∞∑
s=1

(−1)s+1

2s
gs
1|ϕ0|2s

×
+∞∑

n1,...,nd=−∞

∫
dD−dq

(a1n2
1 + · · · + adn2

d + c2 + q2)s
. (6)

The parameter s counts the number of vertices on the
loop.

It is easily seen that only the s = 1 term contributes
to the renormalization condition (4). It corresponds to the
tadpole diagram. It is then also clear that all |ϕ0|6-vertex
and mixed |ϕ0|4- and |ϕ0|6-vertex insertions on the 1-loop

diagrams do not contribute when one computes the second
derivative of similar expressions with respect to the field at
zero field: only diagrams with two external legs should
survive. This is impossible for a |ϕ0|6-vertex insertion at
the 1-loop approximation. Therefore, the first contribution
from the |ϕ0|6 coupling must come from a higher-order
term in the loop expansion. Two-loop diagrams with two
external legs and only |ϕ0|4 vertices are of second order in
its coupling constant, and we neglect them, as well as all
possible diagrams with vertices of mixed type. However,
the 2-loop shoestring diagram, with only one |ϕ0|6 vertex
and two external legs is a first-order (in η) contribution to
the effective potential, according to our approximation.

In short, we consider the physical mass as defined at
first-order in both coupling constants, by the contribu-
tions of radiative corrections from only two diagrams: the
tadpole and the shoestring diagrams.

The tadpole contribution reads (putting s = 1 in
Eq. (6))

U1(ϕ0, a1, ..., ad) = µD√
a1 · · · ad

1
2

g1|ϕ0|2

×
+∞∑

n1,...,nd=−∞

∫
dD−dq

q2 + a1n2
1 + · · · + adn2

d + c2
. (7)

The integral over the D − d noncompactified momentum
variables is performed using the well-known dimensional
regularization formula [7]

∫
dlq

q2 + M
=

Γ (1 − l
2 )πl/2

M1−l/2
; (8)

for l = D − d, we obtain

U1(ϕ0, a1, ..., ad) = µD√
a1 · · · ad

∞∑
s=1

f(D, d)g1|ϕ0|2Zc2

d

×
(

2 − D + d

2
; a1, ..., ad

)
, (9)

where

f(D, d) = π(D−d)/2 1
2
Γ

(
1 − D − d

2

)
(10)

and Zc2

d (ν; a1, ..., ad) are Epstein–Hurwitz zeta-functions,
valid for Re(ν) > d/2, defined by

Zc2

d (ν; a1, ..., ad) =
+∞∑

n1,...,nd=−∞
(a1n

2
1 + · · ·+ adn

2
d + c2)−ν .

(11)
Next, we can proceed to generalizing to several dimen-
sions the mode-sum regularization prescription described
in reference [16]. This has been done in reference [8] and
it results that the multidimensional Epstein–Hurwitz
function has an analytic extension to the whole ν com-
plex plane. In terms of this extended Epstein–Hurwitz
function, taking ν = (2 − D + d)/2 in equation (11),
we obtain from equation (9) the tadpole part of the
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m2({Li}) = m2
0 − λ

(2π)D/2

[ ∞∑
n1=1

(
m

L1n1

)D/2−1

KD/2−1(mL1n1) + · · · +
∞∑

nd=1

(
m

Ldnd

)D/2−1

× KD/2−1(mLdnd) + 2
d∑

i<j=1

∞∑
ni,nj=1

⎛
⎝ m√

L2
i n

2
i + L2

jn
2
j

⎞
⎠

D/2−1

KD/2−1

(
m
√

L2
i n

2
i + L2

jn
2
j

)

+ · · · + 2d−1
∞∑

n1,...,nd=1

(
m√

L2
1n

2
1 + · · · + L2

dn2
d

)D/2−1

KD/2−1

(
m
√

L2
1n

2
1 + · · · + L2

dn2
d

)]

+
η

2(2π)D

[ ∞∑
n1=1

(
m

L1n1

)D/2−1

KD/2−1(mL1n1) + · · · +
∞∑

nd=1

(
m

Ldnd

)D/2−1

KD/2−1(mLdnd)

+ 2
d∑

i<j=1

∞∑
ni,nj=1

⎛
⎝ m√

L2
i n

2
i + L2

jn
2
j

⎞
⎠

D/2−1

KD/2−1

(
m
√

L2
i n

2
i + L2

jn
2
j

)
+ · · · + 2d−1

×
∞∑

n1,...,nd=1

(
m√

L2
1n

2
1 + · · ·L2

dn2
d

)D/2−1

KD/2−1

(
m
√

L2
1n

2
1 + · · ·L2

dn2
d

) ]2

. (16)

effective potential in D dimensions with a compactified
d-dimensional subspace:

U1(ϕ0, L1, ..., Ld)=
λ|ϕ0|2

2 (2π)D/2

[
2−D/2−1mD−2Γ

(
2−D

2

)

+
d∑

i=1

∞∑
ni=1

(
m

Lini

)D/2−1

KD/2−1(mLini)

+ 2
d∑

j<i=1

∞∑
ni,nj=1

⎛
⎝ m√

L2
i + L2

j

⎞
⎠

D/2−1

× KD/2−1

(
m
√

L2
i + L2

j

)
+ · · · + 2d−1

×
∞∑

n1,...,nd=1

(
m√

L2
1n

2
1 + · · · + L2

dn
2
d

)D/2−1

× KD/2−1

(
m
√

L2
1n

2
1 + · · · + L2

dn
2
d

)]
, (12)

where the Kν are Bessel functions of the third kind, and
we have returned to the original variables, ϕ0, λ, and Li.

We now turn to the 2-loop shoestring diagram con-
tribution to the effective potential, using again the
Matsubara-modified Feynman rule prescription for the
compactified dimensions. In unbounded space (Li = ∞),
it reads

U2(ϕ0) =
η|ϕ0|2

16

[∫
dDq

(2π)D

1
q2 + m2

]2

, (13)

which, after the compactification of d dimensions of linear
extensions Li, i = 1, . . . , d, becomes

U2(ϕ0, a1, . . . , ad) =
1
2
g2|ϕ0|2

× µ2D−2a1 · · · adπ
D−d

[
Γ

(
2 − D + d

2

)

×
∞∑

n1,...,nd=−∞

1
(a1n2

1 + · · · + adn2
d + c2)(2−D+d)/2

]2

,

(14)

where we have defined ϕ0 and ai as before and the dimen-
sionless quantity g2 = (η/8 · 16π4µ6−2D). Equation (8)
was also used. The multiple sum above is again the
Epstein–Hurwitz zeta function, Zc2

d

(
2−D+d

2 ; a1 · · · ad

)
,

given by equation (11) for ν = (2 − D + d)/2. In terms of
the original variables, ϕ, η, and Li, we then have

U2(ϕ0, L1, . . . , Ld) =
η|ϕ0|2

4 (2π)D

[
2−1−D/2mD−2Γ

(
2 − D

2

)

+ 2
d∑

i<j=1

∞∑
ni,nj=1

⎛
⎝ m√

L2
i n

2
i + L2

jn
2
j

⎞
⎠

D/2−1

× KD/2−1

(
m
√

L2
i n

2
i + L2

jn
2
j

)
+ · · ·

+ 2d−1 ×
∞∑

n1,...,nd=1

(
m√

L2
1n

2
1 + · · · + L2

dn
2
d

)D/2−1

× KD/2−1(m
√

L2
1n

2
1 + · · · + L2

dn
2
d)

]2

. (15)
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Notice that in both equations (12) and (15) there is a
term proportional to Γ

(
2−D

2

)
which is divergent for even

dimensions D ≥ 2 and should be subtracted in order to
obtain finite physical parameters. For odd D, the above
gamma function is finite, but we also subtract its term
(corresponding to a finite renormalization) for the sake of
uniformity. After subtraction we get the renormalized 1-
and 2-loop contributions to the effective potential.

Then the physical mass with both renormalized con-
tributions is obtained from equation (4) and also taking
into account the contribution at the tree level; it satisfies a
generalized Dyson–Schwinger equation depending on the
extensions Li of the confining box:

See equation (16) previous page.

A first-order transition occurs when all the three minima
of the potential

U(ϕ0) =
1
2
m2({Li})|ϕ0|2 − λ

4
|ϕ0|4 +

η

6
|ϕ0|6, (17)

where m({Li}) is the renormalized mass defined above,
are simultaneously on the line U(ϕ0) = 0. This gives the
condition

m2({Li}) =
3λ2

16η
. (18)

For D = 3, the Bessel functions entering in the above
equations have an explicit form, K1/2(z) =

√
πe−z/

√
2z,

which is to be replaced in equation (16). Performing
the resulting sums, introducing the value of the mass,
equation (18), in equation (16), and remembering that
m2

0 = α(T/T0 − 1), one obtains the critical temperature

Tc({Li}) = Tc

{
1 −

(
1 +

3λ2

16ηα

)−1
{

λ

8πα

×
[

d∑
i=1

1
Li

ln
(

1 − e−
√

3λ2
16η Li

)

− 2
d∑

j<i=1

∞∑
ni,nj=1

e−m(Li)
√

L2
i n2

i +L2
jn2

j√
L2

i n
2
i + L2

jn
2
j

− 2d−1
∞∑

n1,...,nd=1

e
−
√

3λ2
16η

√
L2

1n2
1+···+L2

d
n2

d√
L2

1n
2
1 + · · · + L2

dn
2
d

]

+
η

64π2α

[
d∑

i=1

1
Li

ln
(

1 − e−
√

3λ2
16η Li

)

− 2
d∑

j<i=1

∞∑
ni,nj=1

e−m(Li)
√

L2
i n2

i +L2
jn2

j√
L2

i n
2
i + L2

jn
2
j

+ 2d−1
∞∑

n1,...,nd=1

e−
√

3λ2
16η

√
L2

1n2
1+···+L2

dn2
d√

L2
1n

2
1 + · · · + L2

dn
2
d

]2}}
,

(19)

where

Tc = T0

(
1 +

3λ2

16ηα

)
(20)

is the bulk (Li → ∞) critical temperature for the first-
order phase transition.

3 The film, the wire and the grain

Having developed the general case of a d-dimensional com-
pactified subspace, it is now easy to obtain the specific
formulas for particular values of d. If we choose d = 1, the
compactification of just one dimension, let us say, along
the x1-axis, we are considering that the system is con-
fined between two planes, separated by a distance L1 = L.
Physically, this corresponds to a film of thickness L and we
have that the transition occurs at the critical temperature
T film

c (L) given by

T film
c (L) = Tc

{
1−
(
1+

3λ2

16ηα

)−1
[

λ

8παL
ln
(
1−e−

√
3λ2
16η L

)

+
η

64π2αL2

(
ln(1 − e

−
√

3λ2
16η L)

)2
]}

. (21)

Let us now take the case d = 2, in which the system is
confined simultaneously between two parallel planes a dis-
tance L1 apart from one another normal to the x1-axis and
two other parallel planes, normal to the x2-axis separated
by a distance L2. That is, the material is bounded within
an infinite wire of rectangular cross section L1 × L2. To
simplify matters, we take L1 = L2 = L in equation (19)
with d = 2, and the critical temperature is written in
terms of L as

T wire
c (L) = Tc

{
1 −

(
1 +

3λ2

16ηα

)−1

×
[

λ

4παL

[
2 ln

(
1 − e−L

√
3λ2
16η

)

− 2
∞∑

n1,n2=1

e
−L

√
3λ2
16η

√
n2

1+n2
2√

n2
1 + n2

2

]

+
η

32π2αL2

(
2 ln

(
1 − e−L

√
3λ2
16η

)

− 2
∞∑

n1,n2=1

e
−L

√
3λ2
16η

√
n2

1+n2
2√

n2
1 + n2

2

)2]}
. (22)

Finally, we may compactify all three dimensions, which
leaves us with a system in the form of a cubic “grain” of
some material. The dependence of the critical temperature
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on its linear dimension L1 = L2 = L3 = L, is given by
putting d = 3 in equation (19):

T grain
c (L) = Tc

{
1 −

(
1 +

3λ2

16ηα

)−1
{

λ

4παL

×
[
3 ln

(
1 − e−L

√
3λ2
16η

)

− 2
3∑

j<i=1

∞∑
ni,nj=1

e
−
√

3λ2
16η L

√
n2

i +n2
j√

n2
i + n2

j

− 4
∞∑

n1,...,n3=1
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. (23)

A similar work has been done for a second-order transi-
tion in either films, wires or grains, obtained by the same
methods from the λϕ4 Ginzburg–Landau model [11]. In
this case the {Li} -dependent physical mass has a simpler
expression,

m2
2nd({Li}) = m2

0 −
λ

(2π)D/2

[ ∞∑
n1=1

(
m

L1n1

)D/2−1

× KD/2−1(mL1n1) + · · ·

+
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m
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2
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)]
, (24)

from which, taking all Li’s equal to L and going to the
limit m2

2nd({Li}) → 0, formulas for the transition temper-
ature for films, wires and grains can be obtained. All of
them have the same functional dependence on the linear
dimension L. In all cases studied there, it is found that the
boundary-dependent critical temperature decreases lin-

early with the inverse of the linear dimension L,

T 2nd
c (L) = T0 − Cdλ

αL
, (25)

where α and λ are the Ginzburg–Landau parameters, T0

is the bulk transition temperature and Cd is a constant
equal to 1.1024, 1.6571 and 2.6757 for d = 1 (film), d = 2
(square section wire) and d = 3 (cubic grain), respectively.

Comparing equations (21)–(23) with equation (25), we
see that in all the cases (a film, a wire or a grain), there
is a sharp contrast between the simple inverse linear be-
havior of Tc(L) for second-order transitions and the rather
involved dependence on L of the critical temperature for
first-order transitions. These two types of behavior prompt
us to try to clarify the subject further, by comparing the
theoretical curves with experimental data for supercon-
ducting materials. However, as far as we know, no avail-
able data exist for superconducting grains. We shall thus
consider the situations of bounded systems in the form of
a film or of a wire. In so doing, we can explicitly compare
the forms of the Tc(L) curves for both first- and second-
order transitions, and also exhibit the degree of agreement
between our theoretical expressions for the first-order crit-
ical temperature and some experimental results obtained
from superconducting films and wires.

To start, we mention the generalization of
Gorkov’s [17–19] microscopic derivation for the λϕ4

model in order to include the additional interaction
term ηϕ6 in the free energy [13]. The interest here is to
determine the phenomenological constant η as a function
of the microscopic parameters of the material, in an
analogous way as has been done for the constant λ in the
λϕ4 model. This leads to [13],

α = 1 λ ≈ 111.08
(

T0

TF

)2

,

η ≈ 8390
(

T0

TF

)4

, m2
0 =

T

T0
− 1, (26)

where TF is the Fermi temperature and T0 is the temper-
ature parameter introduced in equation (1), which can be
obtained from the first-order bulk critical temperature by
means of equation (20).

By replacing the above constants in equation (21), we
get the critical temperature as a function of the film thick-
ness and in terms of tabulated microscopic parameters for
specific materials.

We remark that Gorkov’s original derivation of the
phenomenological constants is valid only for perfect crys-
tals, where the electron mean free path l is infinite. How-
ever, we know that in many superconductors the attrac-
tive interaction between electrons (necessary for pairing)
is brought about indirectly by the interaction between the
electrons and the vibrating crystal lattice (phonons). The
presence of impurities within the crystal lattice modifies
the interaction between electrons and phonons, with the
consequence of making the electron mean free path finite.
In fact the dieter is the sample, shorter the mean free path
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becomes [19]. The Ginzburg–Landau phenomenological
constants λ and η and the coherence length are somehow
related to the interaction of the electron pairs with the
crystal lattice and the impurities. A way of taking these
facts into account preserving the form of the Ginzburg–
Landau free energy is to modify the intrinsic coherence
length ξ0 and the coupling constants. Accordingly [19],
ξ0 → ρ1/2ξ0, λ → 2ρ−3/2λ and η → 4ρ−3η, where
ρ ≈ 0.18R−1, with R = ξ0/l, where ξ0 = 0.13(�vF /kBT0).
Then, it can be shown that equation (21) becomes [13],

T film
c (L) = Tc

{
1 −

(
1 +
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16η
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0.18 · 8π
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4R2η
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(
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×
(

ln
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L
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√
3λ2
16η

R
0.18

))2]}
. (27)

Also for realistic samples other effects, such that of the
substrate over which the superconductor film is deposited,
should be taken into account. In the context of our model,
however, we are not able to describe such effects at a
microscopic level. We therefore assume that they will be
translated in changes on the values of the coupling con-
stants λ and η. So, we propose as an Ansatz the rescaling
of the constants in the form λ → aλ and η → a2η. We
may still combine both parameters R and a as r = aR.
equation (27) is then written as

T film
c (L) = Tc

{
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(
1 +

3λ2

16η

)−1[
2rλ

0.18 · 8π

ξ0
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× ln
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√
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L
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×
(

ln

(
1 − e−

L
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√
3λ2
16η

R
0.18

))2]}
. (28)

In Figure 1 we plot equation (28) to show the behavior
of the transition temperature as a function of the thick-
ness for a film made from aluminum. The values for Al of
the Fermi temperature, the bulk critical temperature and
Fermi velocity are TF = 13.53 × 104 K, Tc = 1.2 K, and
vF = 2.02 × 106m/s, respectively.

We see from the figure that the critical temperature
grows from zero at a nonnull minimal allowed film thick-
ness above the bulk transition temperature Tc as the
thickness is enlarged, reaching a maximum and afterwards
starting to decrease, going asymptotically to Tc as L → ∞.

Fig. 1. Critical temperature T film
c (K) as function of thickness

L (Å), from equation (28) and data from reference [20] for a
superconducting film made from aluminum.

Fig. 2. Critical temperature Tc (K) as a function of the thick-
ness L (Å) for a second-order transition, as theoretically pre-
dicted in reference [9]. Dots are experimental data taken from
reference [21] for a superconducting film made from niobium.

We also plot for comparison some experimental data ob-
tained from reference [20]. We see that our theoretical
curve is in qualitatively good agreement with measure-
ments, especially for thin films.

This behavior may be contrasted with the one shown
by the critical temperature for a second-order transition.
In this case, the critical temperature increases monoton-
ically from zero, again corresponding to a finite minimal
film thickness, going asymptotically to the bulk transi-
tion temperature as L → ∞. This is illustrated in Fig-
ure 2, adapted from reference [9], with experimental data
from [21]. (Such behavior has also been experimentally
found by some other groups for a variety of transition-
metal materials, see Refs. [25–27].) Since in the present
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work a first-order transition is explicitly assumed, it is
tempting to infer that the transition described in the ex-
periments of reference [20] is first order. In other words,
one could say that an experimentally observed behavior of
the critical temperature as a function of the film thickness
may serve as a possible criterion to decide about the or-
der of the superconductivity transition: a monotonically
increasing critical temperature as L grows would indi-
cate that the system undergoes a second-order transition,
whereas if the critical temperature presents a maximum
for a value of L larger than the minimal allowed one, this
would be signaling the occurrence of a first-order transi-
tion.

Let us now consider a sample of superconducting ma-
terial in the form of an infinitely long wire with a cross
section of side L. The same arguments and rescaling pro-
cedures used precedingly for films apply equally in the
present situation. In this way, equation (22) is accordingly
modified. It assumes the form

T wire
c (L) = Tc
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16η
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. (29)

Notice that, due to the presence of the exponentials,
the double series in equation (29) is convergent. Therefore,
they can be truncated at some finite value for n1 and n2,
so that a plot of the curve T wire

c (L) vs. L can be drawn. In
fact, the series are rapidly convergent and no detectable
difference exists if we take the sums over n1 and n2 up to
50 or a higher number. In Figure 3 this curve is plotted and
compared with experimental data from references [22,23]
for an aluminum wire. Here, we have used the same tabu-
lated values for TF , Tc and vF for aluminum as in the case
of films. Also, for the parameter R a larger value than the
corresponding one for films (Rwire = 20 Rfilm) is taken.
This is to account for the fact that samples in the form
of wires are more sensitive to the presence of impurities
than in the case of films [24]. From Figure 3, we then notice
that, for not extremely thin wires, the data agrees quite
well with the theoretical curve. We see that the theoretical
predicted behavior of the critical temperature as a func-
tion of the square root of the cross section area (for us, the
transverse linear dimension L) is qualitatively of the same
type we found for films. Therefore, if one follows the same
line of reasoning we have done for films, one may con-
clude that the phase transition for these superconducting

Fig. 3. Reduced critical temperature t = Twire
c /Tbulk as a

function of the square root of the cross section A1/2 (nm), from
equation (29) for an Al wire (the solid curve). The diamond
symbols are data from reference [22] and the star symbols are
data from reference [23]. We have used r = 150 × 104 and
R ≈ 23.

aluminum wires is first order, just as for aluminum films.
This conjecture is reinforced, if one remembers that equa-
tion (25) for second-order transitions is equally applicable
to wires, showing a similar behavior as that illustrated in
Figure 2, in which the curve approaches the bulk criti-
cal temperature from below. However, it is clear from the
data that the critical temperature takes higher values as
L is decreased, thus being incompatible with the expected
behaviour of a second order transition.

4 Concluding remarks

Studies on the dependence of the critical temperature for
films with its thickness have been done in other contexts
and approaches, different from the one we adopt. For in-
stance in references [1,7] an analysis of the renormaliza-
tion group in finite-size geometries can be found. Also,
such a dependence has been investigated in [32,33,25,26]
from both experimental and theoretical points of view,
explaining this effect in terms of proximity, localization
and Coulomb interaction. In particular, reference [32] pre-
dicts, as our model also do, a suppression of the supercon-
ducting transition for thicknesses below a minimal value.
More recently in reference [22] the thickness dependence of
the critical temperature is explained in terms of a shape-
dependent superconducting resonance, but no suppression
of the transition is predicted or exhibited.

In this paper we have adopted a phenomenological ap-
proach, discussing the

(
λ|ϕ|4 + η|ϕ|6)

D
theory compact-

ified in d ≤ D Euclidean dimensions. We have presented
a general formalism which, in the framework of the
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Ginzburg–Landau model, is able to describe phase tran-
sitions for systems defined in spaces of arbitrary dimen-
sion, some of them being compactified. We have focused
on the situations with D = 3 and d = 1, 2, 3, corre-
sponding (in the context of condensed-matter systems)
to films, wires and grains, respectively, undergoing phase
transitions which are supposed to be described by (mean-
field) Ginzburg–Landau models. We have parameterized
the bare mass term in the form m2

0 = α(T/T0 − 1),
with α > 0 and T0 being a parameter with the di-
mension of temperature, thus placing the analysis within
the Ginzburg–Landau framework. This generalizes pre-
vious works dealing with first- and second-order transi-
tions and low-dimensional compactified subspaces [13,8,
11] . Such a generalization is far from being trivial, since
it involves extensions to several dimensions of the one-
dimensional mode-sum regularization described in refer-
ence [16]. These extensions require, in particular, the defi-
nition of symmetrized multidimensional Epstein–Hurwitz
functions with no analog in the one-dimensional case. It
is this kind of mathematical framework that allows us to
obtain the general formula (19), which may be particu-
larized to films, wires and grains, thereby implying the
peculiar forms of the critical temperature as a function of
the linear dimension L, for the three physically interesting
cases.

It should be observed the very different form of equa-
tions (21)–(23) when compared with the corresponding
ones for second-order transitions given by equation (25),
obtained within the Ginzburg–Landau ϕ4 theory. In all
cases, the functional form of the dependence of the crit-
ical temperature Tc(L) on the linear dimension L is of
the following type: it grows from zero at a nonnull mini-
mal allowed value of L below the bulk transition temper-
ature Tc as L is enlarged, reaching a maximum above Tc

and afterwards starting to decrease, going asymptotically
to Tc as L → ∞. Equation (21) is in qualitatively good
agreement with measurements [20] taken for a supercon-
ducting aluminum film, especially for thin ones. Moreover,
experimental data published in very recent years for an Al
superconducting wire [22,23] show good accordance with
equation (22). Due to the extreme difficulties in preparing
very thin wires, however, there is an unfortunate lack of
data for L � 15 nm, which prevents the testing of the
characteristic behavior of Tc we expect in this range of
values, with a sudden drop to zero of Tc after it reaches
a maximum value above the bulk one. This is a very con-
trasting behavior with that of the critical temperature for
materials displaying a second-order phase transition [9],
for which the critical temperature increases monotoni-
cally from zero, again corresponding to a finite minimal
film thickness, going to the bulk transition temperature as
L → ∞. Such behavior may indicate that from the form
of the dependence of the critical temperature on the size
of the system, the order of the transition the system un-
dergoes could be inferred. Finally we should mention the
important point that hysteresis is a characteristic feature
of a first-order transition. In our case, it would mean that
the transition temperature in the direction from the nor-

mal phase to the superconducting phase (let’s call it T NS
c )

is different from the critical temperature in the inverse way
(T SN

c ). To our knowledge, the experiments investigating
the thickness-dependent transition temperature are only
from the normal state to the superconducting one, so they
do not show hysteresis. We have not found, at least in the
papers that are useful for us, experimental studies on the
comparison of the critical temperatures T NS

c and T SN
c .

For us, remembering equations (19) and (20), such a study
would require separate calculations of the the Ginzburg-
Landau phenomenological parameters λ, α and η for the
transition in the directions NS and SN .
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